

Unexpected behaviour when using 1-10V controller system:
When controlling the driver with a 1-10V system it can occur that the 1-10V controller delivers (or allows)
When controlling the driver with a $1-10 \mathrm{~V}$ system it can occur that the $1-10 \mathrm{~V}$ controller
This will result in unexpected and unintended behavior of the LEDs.
In case of symptoms like these, it is sufficient to clamp the output of the control system with a 10 or 12 V zener diode (cathode connected to the positive)

Disorganized system when using pulse function:
When parallel connecting a pulse switch on several drivers it can occur that the pulse length is exactly too short or too long.
When parallel connecting a pulse switch on several drivers it can occur that the pulse length is exactly too short or too long.
On this critical border it can be that the drivers are not working in unison. It can be reset without disconnecting the mains power. On this critical border it can be that the drivers are not working in unison. It can be reset without disconnecting the
Reset procedure: By long pressing the pulse switch the drivers always turns on, independently of the initial state. Give a short pulse and all the drivers are now off. By long pressing again all drivers turn on and ramp up in unison.

We recommend pulse operation mainly for fixtures in which each driver is regulated independently.
Complete synchronous regulation isn't processed in the driver.

Technical data

Rated supply voltage	220-240 Vac
Input voltage	180-240 Vac / 150-375 Vdc*
Mains frequency	$50 / 60 \mathrm{~Hz}$
Output current tolerance	5\%
100 Hz ripple current	$<1 \%$
Power factor at full load	0.97
Standby power	350 mW
Nominal line current at $\mathbf{2 4 0} \mathbf{V a c}$	160 mA
Dimming method	linear
Minimum dim level	15 mA
Nonvolatile memory	Yes
Startup time	< 1 s
Warm up time to 95\% of light output	<1s
Output isolation	SELV
Surge protection (diff. / comm.)	$2 \mathrm{kV} / 6 \mathrm{kV}$
IP classification	IP 20
Circuit lifetime	50,000 hrs at Tc max.
Case dimensions	$110 \times 52 \times 23.5 \mathrm{~mm}$
Case material	Polyamide 6 (PA6)

Maximum number of drivers on automatic circuit breakers

Inrush current

Mains max. peak inrush at full load	0.255 A per driver on phase 600 (average starting angle)* 0.851 A per driver on phase 90 (worst case starting angle)*
	0.321 A per driver on phase 609 (average starting angle)** 0.879A per driver on phase 90 (worst case starting angle)**

Automatic circuit breaker type
C10

C13
$\xrightarrow{C 13}$
$\begin{array}{ll} & \text { C20 } \\ & 117\end{array}$
17
810
59
B16

- Tested at 240 Vac 10 drivers parallel connected, with TTI HA1600A analyzer.

